ComputerClub 2
Sitemap Kontakt
  Wolfgang Back & Wolfgang Rudolph
Suche:   Wolfgang Back & Wolfgang Rudolph
  Aktuelle Sendung
  Nächste Sendung
  Sendungsarchiv
  Downloads


SENDUNGSARCHIV

23.09.2013
Folge 387

Künftiger MPEG-3D-Audio-Standard kommt vom MP3-Erfinder

Der Vorschlag des Fraunhofer IIS (http://www.iis.fraunhofer.de) für eine neue 3D-Audio-Technologie konnte sich in der MPEG-Standardisierungsorganisation nach einem umfassenden Auswahlverfahren gegen die weltweite Konkurrenz durchsetzen und bildet damit die Grundlage für die Entwicklung des künftigen MPEG-H-3D-Audio-Standards. Dieser Erfolg zeigt einmal mehr eindrucksvoll, dass die mp3- und AAC-Entwickler in Erlangen zur Weltspitze in der Audiocodierung gehören.


Das Schalllabor des Fraunhofer IIS war eines von zehn Akustiklaboren, in denen die MPEG-Vergleichstests durchgeführt wurden. (Quelle: Fraunhofer IIS/Kurt Fuchs)

Der kommende MPEG-Standard wird die effiziente und flexible Übertragung und Wiedergabe von 3D-Audiosignalen ermöglichen. Davon sollen alle denkbaren künftigen Wiedergabesysteme profitieren: 3D-Heimkinosysteme mit Lautsprechern für 22.2-Kanal-Ton, 3D Audiosysteme im Auto und sogar Tablet-Computer und Smartphones, mit denen über Kopfhörer 3D-Sound wiedergegeben werden kann.

Um dieses breite Einsatzspektrum zu ermöglichen, wurden in MPEG vorab zwei Kategorien für die Codierung und Wiedergabe definiert: kanal-/objektbasiertes und szenenbasiertes 3D-Audio. Unternehmen und Einrichtungen aus aller Welt haben daraufhin Technologie-Vorschläge für die beiden Anwendungsfälle eingereicht, die in zehn Akustiklaboren weltweit getestet wurden – insgesamt von über 50 Testhörern, die über 41 000 Wertungen abgegeben haben.

Die kanal-/objektbasierte Technologie des Fraunhofer IIS enthält einen Audiocodec, der auf dem neuen Extended HE-AAC Codec aufbaut und mit einem 3D-Rendering-Algorithmus kombiniert ist. Mit diesem Ansatz konnte in den MPEG-Hörversuchen die beste Klangqualität für alle getesteten Wiedergabeszenarien dieser Kategorie erzielt werden.

Der endgültige Standard wird kanal-/objektbasierte und szenenbasierte Technologien zusammenführen. Die Fertigstellung ist für das Frühjahr 2015 geplant.


Nano-Laser als Datenturbo

Der weltweite Datenverkehr wächst rasant. Die Uni Kassel beteiligt sich an einem EU-Projektverbund, der die Kapazität vorhandener Glasfaserkabel verhundertfachen soll. Der Trick: Das Lichtsignal wird mit Zusatzinformationen aufgeladen.

Die Zahlen sind schwindelerregend: 2017, so sagte der Netzwerkausrüster Cisco im vergangenen Mai voraus, werden die Computernetze der Welt einen Datenverkehr von 1,4 Zettabyte transportieren – das sind 1.400.000.000.000.000.000.000 Byte. Ein Grund: Die Datenautobahnen werden verstärkt Internet-Fernsehen und Internet-Telefonie übertragen. „Um die Kommunikation der Zukunft zu bewältigen, müssen wir die Kapazität der Datenübertragung vervielfachen“, erklärt Prof. Dr. Johann Peter Reithmaier, Leiter des Fachgebiets Technische Physik an der Universität Kassel und einer der beiden Direktoren des Instituts für Nanostrukturtechnologie und Analytik (INA). Gemeinsam mit Prof. Dr. Bernd Witzigmann, Leiter des Fachgebiets Theorie der Elektrotechnik und Photonik, beteiligt er sich an einem EU-weiten, millionenschweren Projektverbund, in dem ein Verfahren entwickelt wird, um die Leistung vorhandener Glasfaserkabel um den Faktor 100 zu steigern. Reithmaier: „Wir müssen in einen Bereich vorstoßen, in dem wir pro Sekunde ein Petabit an Informationen übertragen können. Das gilt insbesondere für die Kabel unter den Ozeanen, denn hier wäre es extrem teuer, zusätzliche Leitungen zu verlegen.“ Ein Petabit, das sind 1 Billiarde Bit oder 125 Billionen Byte.


Laserchips ähnlich wie diese stellt Reithmaiers Forschungsgruppe im INA her. Jeder der Streifen auf diesen Chips ist ein Laser. Die Träger-Chips, die für das Projekt Monolop entwickelt werden, sind noch wesentlich kleiner. (Bild: Blafield/Uni Kassel.)

Rund 60 Gruppen – Wissenschaftlerinnen, Wissenschaftler und Unternehmen – beteiligen sich europaweit an diesem Unterfangen. Die EU koordiniert den Projektverbund „SASER“, der sich in einzelne Cluster, Projekte und Teilprojekte gliedert, die jeweils von den nationalen Ministerien finanziell gefördert werden. Das Bundesministerium für Bildung und Forschung unterstützt deutsche Teilprojekte mit insgesamt rund 36,5 Millionen Euro. Das Kasseler Teilprojekt mit dem Titel „Monolop“ erhält rund 1,2 Millionen Euro. Es läuft von Herbst 2012 bis Herbst 2015. Reithmaier und Witzigmann arbeiten dabei zusammen mit der Berliner Firma u2t und dem Fraunhofer Heinrich-Hertz-Institut in Berlin.

Die Zielrichtung von SASER lautet: Dem übertragenen Lichtsignal mehr Informationen mitzugeben als bislang. Bis dato wird das Lichtsignal in der Glasfaser nur durch eine Intensitätsmodulation genutzt. Vereinfacht dargestellt: Ist es stark (oder „an“), dann wird eine 1 übermittelt, ist es schwach („aus“), eine 0. Pro Wellenlänge lassen sich so bis zu 100 Gigabit pro Sekunde übermitteln, zudem ist es inzwischen möglich, bis zu 1000 Wellenlängen parallel zu übertragen, also bis zu 10 Terabit – unvorstellbar viel, aber nicht genug, wenn man sich klarmacht, dass mancher einzelne Rechner inzwischen bis zu 10 Gigabit pro Sekunde abschicken oder empfangen kann. Das Licht kann aber mehr als an- und ausgehen, und das machen sich die Wissenschaftlerinnen und Wissenschaftler für die sogenannte „Kohärente Kommunikation“ zunutze.

So lässt sich innerhalb einer Wellenlänge die Phase verschieben, also ein bestimmter Abstand zwischen den Spitzen einer Welle einschieben. Wenn der Empfänger in der Lage ist, den Abstand auszulesen, lässt sich die Länge der Phasenverschiebung als weitere Information nutzen. Die Physiker sprechen hier von einem zusätzlichen „Freiheitsgrad“ des Lichts, der verschiedene „Zustände“ haben kann. Es gibt noch mehr Möglichkeiten: Die Amplitude, die Höhe des Wellenausschlages, lässt sich ebenfalls aufmodulieren. In modernen Mobilfunknetzen (UMTS, LTE) werden Phase und Amplitude bereits moduliert, für die Optik ist dieser Kunstgriff neu. Auch die Polarisation des Lichts, also die Schwingungsrichtung der Lichtwelle, lässt sich als zusätzliche Eigenschaft mit verschiedenen Zuständen mitgeben.

Aufgabe der Kasseler Professoren und ihrer Arbeitsgruppen ist es nun, diese Zusatzinformationen auslesbar zu machen. Während Prof. Witzigmann die zugrunde liegenden Phänomene theoretisch erklärbar macht, entwickelt das Team um Reithmaier einen winzigen integrierten Halbleiter-Laserchip, der als Referenzoszillator dient. Sein Licht wird mit dem übertragenen Signal abgeglichen; stimmen die Eigenschaften überein, registriert der Empfänger einen bestimmten Wert. Aus diesen Werten setzt sich die übertragene Information zusammen. Die Herausforderung ist, einen stecknadelkopfgroßen Laserchip so exakt herzustellen, dass er ein stabiles Lichtsignal abgibt. Die Arbeitsgruppe um Reithmaier trägt dafür winzige, nur wenige Nanometer große Kristalle („Quantenpunkte“) aus Indiumarsenid auf ein Indiumphosphid-Trägermaterial. Jeder Quantenpunkt kann ein einzelnes Elektron auffangen und ein einzelnes Lichtteilchen aussenden. „Je gleichmäßiger die Quantenpunkte aufgetragen sind, desto höher ist die Qualität des Lichts“, betont Reithmaier. „Hierin sind wir weltweit führend.“ Zudem ist der Laser abstimmbar, d.h. sein Licht kann in Sachen Phasenverschiebung und Polarisation verschiedene Zustände annehmen und so mit dem Übertragungssignal abgeglichen werden.

Die Gruppe um Prof. Reithmaier hat in den Reinräumen des INA bereits die ersten Probe-Chips produziert, die nun getestet werden. Reithmaier: „Die ersten Ergebnisse sind ermutigend.“


zurück zum Archiv
Anhören:


Audiodatstream
Download 128 Kbit/s (~27 MB)
Download 32 Kbit/s (~7 MB)
Ogg Vorbis 56 Kbit/s (~12 MB)
RSS Feed (Audiocast, letzte 5 Sendungen)
RSS Feed (Audiocast, alle Sendungen)

Druckversion Impressum Haftungsausschluss