ComputerClub 2
Sitemap Kontakt
  Wolfgang Back & Wolfgang Rudolph
Suche:   Wolfgang Back & Wolfgang Rudolph
  Startseite
  Neuigkeiten
  Historie
  Pressestimmen
  Redaktion
  Kontakt
  Sitemap
  Haftungsausschluss
  Impressum


SCHLAGZEILEN

18.11.2016
Kontrollierte Elektronenblitze für Quantenmechanik (Heinz Schmitz)

Die Emission von Elektronen aus einem Material unter Beleuchtung, die Photoemission, war in der Geschichte der Physik ein wichtiges Element, um die Entwicklung der Quantenmechanik voranzutreiben. Wissenschaftlern ist es nun gelungen, die Photoemission von scharfen Metallnadeln in bisher nicht erreichtem Ausmaß zu kontrollieren.

Für dieses sogenannte Zwei-Farben-Experiment schickten die Forscher – Dr. Michael Förster, Timo Paschen, Dr. Michael Krüger und Prof. Dr. Peter Hommelhoff – zunächst einen Laserpuls von nur etwa 100 billiardstel Sekunden Dauer durch einen Kristall. Dieser Kristall verschmilzt jeweils zwei Photonen des Laserpulses miteinander. So entsteht zusätzlich zum eingestrahlten, starken Lichtpuls ein weiterer, schwacher Lichtpuls höherer Frequenz. Das Besondere daran: Die neuen Photonen besitzen genau die doppelte Energie der ursprünglichen Photonen. In einem Interferometer trennten die FAU-Wissenschaftler beide Farben und kontrollieren Schwingungsrichtung, Intensität und Zeitverzögerung der beiden Pulse.

Wenn die Laserpulse dann wieder gemeinsam auf die Wolframspitze treffen, wird Ihre Energie auf den Scheitelpunkt der Spitze konzentriert. Dadurch ist die Elektronenemission auf das Ende der Spitze beschränkt. Dabei beobachteten die Forscher, dass sie durch die Zeitverzögerung zwischen den beiden Laserpulsen die Elektronenemission bei optimal gewählten Parametern fast perfekt ein- und ausschalten können. Dies ist auf den ersten Blick überraschend, denn es befindet sich immer Lichtenergie (Photonen) auf der Spitze. Es ist also die relative Ankunftszeit der unterschiedlich farbigen Laserpulse, die darüber entscheidet, ob Elektronen emittiert werden oder nicht.

Dem Mechanismus der Kontrolle kamen die Forscher durch Vergleich der experimentellen Ergebnisse mit Berechnungen durch Physiker der Technischen Universität Wien um Prof. Dr. Joachim Burgdörfer auf die Spur: Für die Emission können die Elektronen mit Photonen beider Pulse wechselwirken. Das führt zu zwei dominanten Emissionswegen, wobei die Zeitverzögerung zwischen den Pulsen bestimmt, ob diese beiden Wege zusammen oder gegeneinander arbeiten: Die Emission wird verstärkt oder unterdrückt, in sogenannter Quanten-Pfad-Interferenz.

Scharfe Metallspitzen dienen seit langem in höchstauflösenden Elektronenmikroskopen als nahezu punktförmige Elektronenquelle. Basierend auf den Ergebnissen dieses Experiments hoffen die Forscher zukünftig komplexe Elektronenpulse zu erzeugen, die für zeitaufgelöste Elektronenmikroskopie von Bedeutung sein könnten. Auch für Grundlagenuntersuchungen der Kohärenz an Oberflächen sind die experimentellen Ergebnisse von Interesse, da die Oberfläche der Nanostruktur besonders gut kontrollierbar ist und außerdem die Nanospitzen durch ihre kleinen Dimensionen zu außergewöhnlich klaren Messsignalen führen.

Originalveröffentlichung:
Fachzeitschrift Physical Review Letters
https://doi.org/10.1103/PhysRevLett.117.217601

Siehe auch:
https://www.fau.de/
http://www.heinz-schmitz.org



zurück zum Archiv

Druckversion Impressum Haftungsausschluss